久久精品国产99国产精2020丨,亚洲成αv人片在线观看,www.黄色av免费,亚洲黄色在线,福利无码视频世界,欧美色综合一区二区三区,2017夜夜爱毛片

GaN功率開關(guān)及其對(duì)EMI的影響探究

來源:網(wǎng)絡(luò)

點(diǎn)擊:815

A+ A-

所屬頻道:新聞中心

關(guān)鍵詞: GaN,EMI,功率開關(guān)

      1月出席DesignCon 2015時(shí),我有機(jī)會(huì)聽到一個(gè)由Efficient Power Conversion 公司CEO Alex  Lidow主講的有趣專題演講,談到以氮化鎵(GaN)技術(shù)進(jìn)行高功率開關(guān)組件(Switching Device)的研發(fā)。我也有幸遇到“電源完整性  --在電子系統(tǒng)測(cè)量、優(yōu)化和故障排除電源相關(guān)參數(shù)(Power Integrity - Measuring, Optimizing, and  Troubleshooting Power Related Parameters in Electronic Systems)”一書的作者Steve  Sandler,他提出與測(cè)量這些設(shè)備的皮秒邊沿(Picosecond Edge)速度相關(guān)聯(lián)(可參看他文章索引的部分)。

      由于這些新電源開關(guān)的快速開關(guān)速度與相關(guān)更高效率,因此我們希望看到他們能適用于開關(guān)模式電源和射頻(RF)功率放大器。他們可廣泛取代現(xiàn)有的金屬氧化物半導(dǎo)體場(chǎng)效晶體管(MOSFET),且具有較低的“On”電阻、更小的寄生電容、更小的尺寸與更快的速度。我已注意到采用這些裝置的新產(chǎn)品,其他應(yīng)用包括電信直流對(duì)直流(DC-DC)、無線電源(Wireless  Power)、激光雷達(dá)(LiDAR)和D型音頻(Class D  Audio)。很顯然,任何半導(dǎo)體組件在幾皮秒內(nèi)切換,很可能會(huì)產(chǎn)生大量的電磁干擾(EMI)。

      為了評(píng)估這些GaN組件,Sandler安排我來測(cè)試一些評(píng)估板。一塊我選擇測(cè)試的是Efficient  Power Conversion的半橋(Half-bridge )1MHz  DC-DC降壓轉(zhuǎn)換器EPC9101(圖1),請(qǐng)參考這塊測(cè)試板上的其他信息,以及一些其他的參考部分。

      GaN技術(shù)和潛在的EMI影響

      圖1 該演示板用于顯示GaN的EMI。該GaN組件被圈定,我會(huì)在L1左側(cè)測(cè)量切換的波形。

      該演示板利用8至19伏特(V)電流,并將其轉(zhuǎn)換為1.2伏20安培(A)(圖2),我讓它運(yùn)行在與10奧姆、2瓦(W)負(fù)載、10伏特電壓狀態(tài)。

      GaN技術(shù)和潛在的EMI影響

      圖2 半橋DC-DC轉(zhuǎn)換器的電路圖,波形在L1的左端返回處被測(cè)試

      我試圖用一個(gè)羅德史瓦茲(R&S)RT-ZS20 1.5  GHz的單端探頭捕獲邊緣速率(圖3),并探測(cè)L1的切換結(jié)束,不過現(xiàn)有測(cè)試設(shè)備的帶寬限制,以至于無法忠實(shí)捕捉。我能擷取到最好的(圖4)是一個(gè)1.5納秒上升時(shí)間(其中,以EMI的角度來看,是相當(dāng)快的開始?。? 為準(zhǔn)確地記錄典型的300~500皮秒邊緣速度將需要30 GHz帶寬,或更高的示波器。

      GaN技術(shù)和潛在的EMI影響

      圖3 采用R&S RTE1104示波器和RT-ZS20 1.5 GHz的單端探頭測(cè)量前緣

      GaN技術(shù)和潛在的EMI影響

      圖4 捕獲的上升時(shí)間顯示為217MHz,其顯示最快邊緣速度為1.5納秒

    但事實(shí)上,是在帶寬限制下測(cè)量

      EMI的發(fā)生

      雖然沒能捕捉到實(shí)際的上升時(shí)間,我在217MHz頻率做了評(píng)估提醒鈴聲。正如你稍后將看到的,當(dāng)我們開始在頻域?qū)ふ視r(shí),該諧振在帶寬中產(chǎn)生EMI,并導(dǎo)致一個(gè)峰值。無論是信號(hào)接腳和接地回路連接到R&S  RT-ZS20探頭,路徑都非常短,所以提醒鈴聲并不是由探針造成,而是電路的寄生共振。

      接下來,我量測(cè)在電源輸入電纜傳導(dǎo)的EMI,且透過負(fù)載電阻顯示EMI傳導(dǎo)特征(圖5)。

      GaN技術(shù)和潛在的EMI影響

      圖5 用Fischer F-33-1電流探頭進(jìn)行高頻電流的測(cè)試

      圖6顯示,整個(gè)9k~30MHz的傳導(dǎo)發(fā)射頻段有非常高的1MHz諧波,且都發(fā)生在大約9MHz的間隔諧波上,且有些我還不確定其原生處。這些諧波在負(fù)載電阻電路上特別高,我懷疑若沒有良好質(zhì)量的線性濾波器,這EMI的數(shù)值可能會(huì)使傳導(dǎo)輻射符合性的測(cè)試失敗。

      GaN技術(shù)和潛在的EMI影響

      圖6

      用Fischer F-33-1電流探頭測(cè)量的電源輸入纜線中的高頻電流(紫線),以及10奧姆負(fù)載電阻(藍(lán)線)。黃線是環(huán)境噪聲位準(zhǔn),在約9  MHz的諧波頂部發(fā)生1 MHz的開關(guān)尖峰突出。從我的經(jīng)驗(yàn)來看,藍(lán)色線的位準(zhǔn)令人擔(dān)憂,且可能造成傳導(dǎo)輻射測(cè)試的失敗。

      然后將帶寬從9KHz拓展到1GHz以便觀察諧波可以到多遠(yuǎn),然而才約600兆赫就開始漸行漸遠(yuǎn)。請(qǐng)參看圖7。

      GaN技術(shù)和潛在的EMI影響

      圖7

      用Fischer  F-33-1電流探頭測(cè)量的電源輸入纜線中的傳導(dǎo)輻射(紫線),以及10奧姆負(fù)載電阻(藍(lán)線),黃線是環(huán)境噪聲測(cè)量。輻射所有的出現(xiàn)都在600MHz,須注意共鳴約在220MHz。

      最后,我用R&S RS H 400-1  H場(chǎng)(H-field)探針(圖8)來量測(cè)GaN組件附近的近場(chǎng)和通過負(fù)載電阻器的高頻電流(圖9)。

      GaN技術(shù)和潛在的EMI影響

      圖8

    使用R&S RS h400-1 H場(chǎng)探針測(cè)量接近GaN開關(guān)裝置近場(chǎng)輻射

      GaN技術(shù)和潛在的EMI影響

      圖9

      H場(chǎng)探針測(cè)試結(jié)果。黃線是環(huán)境噪聲位準(zhǔn),紫線是GaN組件附近的測(cè)量,藍(lán)線則是在10奧姆的負(fù)載電阻,輻射終于在約800MHz處逐漸減少。

      注意(除了所有寬帶噪聲位準(zhǔn),峰值出現(xiàn)在約220  MHz)振鈴頻率(標(biāo)示1),以及在460MHz(標(biāo)示2)的諧振。從過往的經(jīng)驗(yàn),我喜歡把諧波位準(zhǔn)降到40dBuV顯示行(Display  Line),也就是上面幾張屏幕截圖中的綠線。兩個(gè)共振都相當(dāng)接近,并因而導(dǎo)致“紅旗”。

      GaN組件價(jià)值顯著

      GaN功率開關(guān)的價(jià)值很明顯,效率也比MOSFET來得好。雖然GaN技術(shù)已問世,但我只看到少部分?jǐn)?shù)據(jù)談?wù)撨@些皮秒開關(guān)裝置如何影響產(chǎn)品EMI的發(fā)生。底下我列出了一些參考,以及在使用GaN組件時(shí),會(huì)“掃大家興”的部分,但我相信有更多研究需要去完成EMI會(huì)發(fā)生的后果,至于EMI工程師與顧問在未來幾年也將可望采用GaN組件。

      Efficient Power Conversion, Inc. (web site, GaN parts, and demo boards)

      Carlson and Hokenson, GaN Gives Power and Flexibility to L-Band Radar.

      EE Times, The 13-Step EMI Mitigation Program for Switching Power Supplies,  12/2013.

      McDonough, et al., Reduction of EMI Effects in Motor Drives and Complex  Power Electronic Systems, University of Texas.

      Mende and Stauffer, Take on GaN measurement challenges, EDN, 12/2012.

      Muttaqi and Haque, Electromagnetic Interference Generated from Fast  Switching Power Electronic Devices, University of Wollongong.

      Sandler, How to measure the world’s fastest power switch,  EDN.如何測(cè)量全球最快的功率開關(guān)

      Sandler, Power Integrity - Measuring, Optimizing, and Troubleshooting Power  Related Parameters in Electronic Systems, McGraw-Hill, 2014.

      TI, Layout Considerations for LMG5200 GaN Power Stage, 3/2015.

     

    (審核編輯: 智匯張瑜)

    聲明:除特別說明之外,新聞內(nèi)容及圖片均來自網(wǎng)絡(luò)及各大主流媒體。版權(quán)歸原作者所有。如認(rèn)為內(nèi)容侵權(quán),請(qǐng)聯(lián)系我們刪除。